using System; public class SMBPitchShifter { private static int MAX_FRAME_LENGTH = 16000; private float[] gInFIFO = new float[MAX_FRAME_LENGTH]; private float[] gOutFIFO = new float[MAX_FRAME_LENGTH]; private float[] gFFTworksp = new float[2 * MAX_FRAME_LENGTH]; private float[] gLastPhase = new float[MAX_FRAME_LENGTH / 2 + 1]; private float[] gSumPhase = new float[MAX_FRAME_LENGTH / 2 + 1]; private float[] gOutputAccum = new float[2 * MAX_FRAME_LENGTH]; private float[] gAnaFreq = new float[MAX_FRAME_LENGTH]; private float[] gAnaMagn = new float[MAX_FRAME_LENGTH]; private float[] gSynFreq = new float[MAX_FRAME_LENGTH]; private float[] gSynMagn = new float[MAX_FRAME_LENGTH]; private long gRover, gInit; //Limiter constants const float LIM_THRESH = 0.95f; const float LIM_RANGE = (1f - LIM_THRESH); const float M_PI_2 = (float)(Math.PI / 2); public float Limiter(float Sample) { float res = 0f; if ((LIM_THRESH < Sample)) { res = (Sample - LIM_THRESH) / LIM_RANGE; res = (float)((Math.Atan(res) / M_PI_2) * LIM_RANGE + LIM_THRESH); } else if ((Sample < -LIM_THRESH)) { res = -(Sample + LIM_THRESH) / LIM_RANGE; res = -(float)((Math.Atan(res) / M_PI_2) * LIM_RANGE + LIM_THRESH); } else res = Sample; return res; } public void PitchShift(float pitchShift, long numSampsToProcess, float sampleRate, float[] indata) { //PitchShift(pitchShift, numSampsToProcess, (long)2048, (long)10, sampleRate, indata); PitchShift(pitchShift, numSampsToProcess, (long)2048, (long)4, sampleRate, indata); } public void PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float[] indata) { double magn, phase, tmp, window, real, imag; double freqPerBin, expct; long i, k, qpd, index, inFifoLatency, stepSize, fftFrameSize2; float[] outdata = indata; /* set up some handy variables */ fftFrameSize2 = fftFrameSize / 2; stepSize = fftFrameSize / osamp; freqPerBin = sampleRate / (double)fftFrameSize; expct = 2.0 * Math.PI * (double)stepSize / (double)fftFrameSize; inFifoLatency = fftFrameSize - stepSize; if (gRover == 0) gRover = inFifoLatency; /* main processing loop */ for (i = 0; i < numSampsToProcess; i++) { /* As long as we have not yet collected enough data just read in */ gInFIFO[gRover] = indata[i]; outdata[i] = gOutFIFO[gRover - inFifoLatency]; gRover++; /* now we have enough data for processing */ if (gRover >= fftFrameSize) { gRover = inFifoLatency; /* do windowing and re,im interleave */ for (k = 0; k < fftFrameSize; k++) { window = -.5 * Math.Cos(2.0 * Math.PI * (double)k / (double)fftFrameSize) + .5; gFFTworksp[2 * k] = (float)(gInFIFO[k] * window); gFFTworksp[2 * k + 1] = 0.0F; } /* ***************** ANALYSIS ******************* */ ShortTimeFourierTransform(gFFTworksp, fftFrameSize, -1); /* this is the analysis step */ for (k = 0; k <= fftFrameSize2; k++) { /* de-interlace FFT buffer */ real = gFFTworksp[2 * k]; imag = gFFTworksp[2 * k + 1]; /* compute magnitude and phase */ magn = 2.0 * Math.Sqrt(real * real + imag * imag); phase = Math.Atan2(imag, real); /* compute phase difference */ tmp = phase - gLastPhase[k]; gLastPhase[k] = (float)phase; /* subtract expected phase difference */ tmp -= (double)k * expct; /* map delta phase into +/- Pi interval */ qpd = (long)(tmp / Math.PI); if (qpd >= 0) qpd += qpd & 1; else qpd -= qpd & 1; tmp -= Math.PI * (double)qpd; /* get deviation from bin frequency from the +/- Pi interval */ tmp = osamp * tmp / (2.0 * Math.PI); /* compute the k-th partials' true frequency */ tmp = (double)k * freqPerBin + tmp * freqPerBin; /* store magnitude and true frequency in analysis arrays */ gAnaMagn[k] = (float)magn; gAnaFreq[k] = (float)tmp; } /* ***************** PROCESSING ******************* */ /* this does the actual pitch shifting */ for (int zero = 0; zero < fftFrameSize; zero++) { gSynMagn[zero] = 0; gSynFreq[zero] = 0; } for (k = 0; k <= fftFrameSize2; k++) { index = (long)(k * pitchShift); if (index <= fftFrameSize2) { gSynMagn[index] += gAnaMagn[k]; gSynFreq[index] = gAnaFreq[k] * pitchShift; } } /* ***************** SYNTHESIS ******************* */ for (k = 0; k <= fftFrameSize2; k++) { /* get magnitude and true frequency from synthesis arrays */ magn = gSynMagn[k]; tmp = gSynFreq[k]; /* subtract bin mid frequency */ tmp -= (double)k * freqPerBin; /* get bin deviation from freq deviation */ tmp /= freqPerBin; /* take osamp into account */ tmp = 2.0 * Math.PI * tmp / osamp; /* add the overlap phase advance back in */ tmp += (double)k * expct; /* accumulate delta phase to get bin phase */ gSumPhase[k] += (float)tmp; phase = gSumPhase[k]; /* get real and imag part and re-interleave */ gFFTworksp[2 * k] = (float)(magn * Math.Cos(phase)); gFFTworksp[2 * k + 1] = (float)(magn * Math.Sin(phase)); } /* zero negative frequencies */ for (k = fftFrameSize + 2; k < 2 * fftFrameSize; k++) gFFTworksp[k] = 0.0F; /* do inverse transform */ ShortTimeFourierTransform(gFFTworksp, fftFrameSize, 1); /* do windowing and add to output accumulator */ for (k = 0; k < fftFrameSize; k++) { window = -.5 * Math.Cos(2.0 * Math.PI * (double)k / (double)fftFrameSize) + .5; gOutputAccum[k] += (float)(2.0 * window * gFFTworksp[2 * k] / (fftFrameSize2 * osamp)); } for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k]; /* shift accumulator */ //memmove(gOutputAccum, gOutputAccum + stepSize, fftFrameSize * sizeof(float)); for (k = 0; k < fftFrameSize; k++) gOutputAccum[k] = gOutputAccum[k + stepSize]; /* move input FIFO */ for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k + stepSize]; } } } public void ShortTimeFourierTransform(float[] fftBuffer, long fftFrameSize, long sign) { float wr, wi, arg, temp; float tr, ti, ur, ui; long i, bitm, j, le, le2, k; for (i = 2; i < 2 * fftFrameSize - 2; i += 2) { for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1) { if ((i & bitm) != 0) j++; j <<= 1; } if (i < j) { temp = fftBuffer[i]; fftBuffer[i] = fftBuffer[j]; fftBuffer[j] = temp; temp = fftBuffer[i + 1]; fftBuffer[i + 1] = fftBuffer[j + 1]; fftBuffer[j + 1] = temp; } } long max = (long)(Math.Log(fftFrameSize) / Math.Log(2.0) + .5); for (k = 0, le = 2; k < max; k++) { le <<= 1; le2 = le >> 1; ur = 1.0F; ui = 0.0F; arg = (float)Math.PI / (le2 >> 1); wr = (float)Math.Cos(arg); wi = (float)(sign * Math.Sin(arg)); for (j = 0; j < le2; j += 2) { for (i = j; i < 2 * fftFrameSize; i += le) { tr = fftBuffer[i + le2] * ur - fftBuffer[i + le2 + 1] * ui; ti = fftBuffer[i + le2] * ui + fftBuffer[i + le2 + 1] * ur; fftBuffer[i + le2] = fftBuffer[i] - tr; fftBuffer[i + le2 + 1] = fftBuffer[i + 1] - ti; fftBuffer[i] += tr; fftBuffer[i + 1] += ti; } tr = ur * wr - ui * wi; ui = ur * wi + ui * wr; ur = tr; } } } }